
2020-08-18

1

ECE 150 Fundamentals of Programming

Douglas Wilhelm Harder, M.Math., LEL

Prof. Hiren Patel, Ph.D., P.Eng.

Prof. Werner Dietl, Ph.D.

© 2018-20 by Douglas Wilhelm Harder and Hiren Patel.

 Some rights reserved.

Arithmetic operators

2
Arithmetic operators

Outline

• In this lesson, we will:

– Define binary arithmetic operators

• Addition, subtraction, multiplication and division

• Integer division

• Remainder/modulus operator

• Conversion of integers to floating-point

– Look at order of operations

• Standard conversions and order of operations

– Consider initialization of and assignment to local variables

– Describe the unary arithmetic operators

• Negation and “+”

3
Arithmetic operators

Arithmetic operations

• Most engineering computations involve simulations of the real
world, requiring the application of mathematics and modelling

– The A380 double-decker jumbo jet was simulated entirely in
software prior to being built for the first time…

– Processors and circuits are simulated using mathematical models

• Here we see a mathematical model of a quantum socket [1]:

4
Arithmetic operators

Arithmetic operations

• A binary arithmetic operator takes two numerical operands and
evaluates that arithmetic operation

– The operands may be integers or floating-point

– They may be literals or local variables

• The available binary arithmetic operators are

Operation Operator Integers Floating-point

Addition + 3 + 5 3.2 + 7.3

Subtraction – 7 - 6 9.5 - 4.1

Multiplication × 8*9 1.5*2.7

Division ÷ 1/2 4.5/9.6

Note: For clarity, it is usual to place spaces around + and -
 but no spaces around * or /

3 + 5

binary operator

operands

2020-08-18

2

5
Arithmetic operators

Arithmetic expression

• An arithmetic expression is any combination of operands combined
with arithmetic operators

7.5

x*x + 1

6.0*width*height

pi*radius*radius

n*(n + 1)/2.0

n*n*(n + 1)*(n + 1)/4.0;

• Arithmetic expressions can be:

– Printed

– Used to initialize local variables

– Assigned to local variables

6
Arithmetic operators

Arithmetic operations

• Juxtaposition is never acceptable to represent multiplication

• If you entered 2xx - 3xy + 4yy, this would result in the compiler

signalling an error

– 2xx is neither a valid integer, floating-point number or identifier

• There is no operator for exponentiation

– Exponentiation requires a function call to a C++ library

– More on this later…

2 22 3 4x xy y  2.0*x*x – 3.0*x*y + 4.0*y*y

7
Arithmetic operators

Order of operations

• The compiler uses the same rules from secondary school:

– Multiplication and division before addition and subtraction

• In all cases, evaluations go from left to right

 x + y/2.0 + z/a /b *c

 (x + y/2.0) + ((z/a)/b)*c

– Parentheses can be used either

• To enforce a different order of operations

• To clarify your intended order of operations

8
Arithmetic operators

Order of operations

#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

 std::cout << (1 + 2 + 3 + 4 * 5 * 6 + 7 + 8 + 9) << std::endl;

 std::cout << (1 * 2 * 3 + 4 * 5 * 6 + 7 + 8 + 9) << std::endl;

 std::cout << (1 * 2 * 3 * 4 * 5 + 6 + 7 + 8 + 9) << std::endl;

 std::cout << (1 * 2 * 3 * 4 * 5 - 6 * 7 + 8 * 9) << std::endl;

 return 0;

}

2020-08-18

3

9
Arithmetic operators

Order of operations

• It is paramount to remember that parentheses can be used either to
emphasize or enforce the order in which operations are performed

• Common mistakes include:

 k/m*n when they mean k/(m*n) or k/m/n

 k/m+n when they mean k/(m + n)

 k+m/n when they mean (k + m)/n

• In two cases, spacing would help you see what is going on:

 k/m+n k/m + n

 k+m/n k + m/n

10
Arithmetic operators

Initialization

• Arithmetic expressions can be used to initialize a local variable:
#include <iostream>

// Function declarations

int main();

// Function definitions

int main() {

 double x{};

 std::cout << "Enter a value of x: ";

 std::cin >> x;

 double y{ x*x - 2.0*x + 1.0 };

 std::cout << " 2" << std::endl;

 std::cout << "x - 2x + 1 = " << y << std::endl;

 return 0;

}

Output:

Enter a value of x: 6 . 5 2

 2
x - 2x + 1 = 30.4704

11
Arithmetic operators

Assignment

• Another example of initialization:
// Function definitions

int main() {

 double radius{};

 std::cout << "Enter the radius of a sphere: ";

 std::cin >> radius;

 double pi{3.1415926535897932}; // 17 digits of precision

 double volume{ 4.0/3.0*pi*radius*radius*radius };

 std::cout << "The volume of the sphere is " << volume << std::endl;

 double area{ 4.0*pi*radius*radius };

 std::cout << "The surface area is "<< area << std::endl;

 return 0;

}

Output:

Enter a radius of a sphere: 1 . 5

The volume of the sphere is 14.1372
The surface area is 28.2743

12
Arithmetic operators

Assignment

• This also works, but is less pleasing…
// Function definitions

int main() {

 double radius{};

 std::cout << "Enter the radius of a sphere: ";

 std::cin >> radius;

 double pi{3.1415926535897932};

 std::cout << "The volume of the sphere is "

 << (4.0/3.0*pi*radius*radius*radius) << std::endl;

 std::cout << "The surface area is "<< (4.0*pi*radius*radius)

 << std::endl;

 return 0;

}

2020-08-18

4

13
Arithmetic operators

Assignment

• The result can also be assigned to a local variable:
int main() {

 double x{}

 std::cout << "Enter a value of x: ";

 std::cin >> x;

 double y{};

 std::cout << "Enter an approximation of sqrt(x): ";

 std::cin >> y;

 y = (y + x/y)/2.0;

 std::cout << "A better approximation of sqrt(" << x << ") = "

 << y << std::endl;

 y = (y + x/y)/2.0;

 std::cout << "A even better approximation of sqrt(" << x << ") = "

 << y << std::endl;

 return 0;

}

14
Arithmetic operators

Assignment

• Executing this program:

Enter a value of x: 3 . 5
Enter an approximation of sqrt(x): 1 . 8
A better approximation of sqrt(3.5) = 1.87222
A even better approximation of sqrt(3.5) = 1.87083

3.5 1.8708286933869707

 y = (y + x/y)/2.0;

 std::cout << "A better approximation of sqrt(" << x << ") = "

 << y << std::endl;

 y = (y + x/y)/2.0;

 std::cout << "A even better approximation of sqrt(" << x << ") = "

 << y << std::endl;

15
Arithmetic operators

Assignment

• The left-hand side of an assignment operator
must be a local variable

– You cannot assign to an arithmetic expression

 2.0*x + 1.0 = y - 1.0;

 x = (y - 2.0)/2.0;

– Again, we emphasize, always read the above as

“x is assigned the value of y minus two all divided by two.”

16
Arithmetic operators

Integer division

• In C++, the result of an arithmetic operation on integers must
produce an integer

– This is a problem for division

 std::cout << (1/2) << std::endl; // outputs 0

 std::cout << (7/3) << std::endl; // outputs 2

 std::cout << (-11/4) << std::endl; // outputs -2

 std::cout << (188/13) << std::endl; // outputs 14

• The result is the quotient discarding any remainder

188 6
14

13 13
 

534 3
35

15 5
 

2020-08-18

5

17
Arithmetic operators

Order of operations

• Here are some further examples that depend on integer division:

 std::cout << (1 / 2 + 3 * 4 + 5 * 6 * 7 - 8 * 9) << std::endl;

 std::cout << (1 + 2 * 3 * 4 / 5 * 6 * 7 * 8 / 9) << std::endl;

 std::cout << (1 * 2 + 3 + 4 * 5 * 6 / 7 * 8 + 9) << std::endl;

• For example:

(1 / 2) + (3 * 4) + (5 * 6 * 7) - (8 * 9)

0 + 12 + 210 - 72 = 150

18
Arithmetic operators

Integer remainder

• Recall that in long division, you find the quotient and the remainder

164

32 5257
32

20



5

192

13



7

128

9



remainder

quotient

5257 164 32 9  

5257 9
164

32 32
 

19
Arithmetic operators

Integer remainder

• To find the remainder of a division, use the modulus operator %

– Also called the remainder operator

 std::cout << (1 % 2) << std::endl; // outputs 1

 std::cout << (7 % 3) << std::endl; // outputs 1

 std::cout << (-11 % 4) << std::endl; // outputs -3

 std::cout << (-175 % -13) << std::endl; // outputs -6

• For any integers m and n, it is always true that

(n/m)*m + n%m equals n

20
Arithmetic operators

Integer remainder

• Let’s take a closer look at:

(n/m)*m + n%m

• Don’t we know from mathematics that as long as m ≠ 0,

• C++ evaluates one operation at a time

– If the compiler sees (7/3)*3,

• It first will have (7/3) calculated, which evaluates to 2

• It then proceeds to calculate 2*3 which is 6

n
m n

m
  ?

2020-08-18

6

21
Arithmetic operators

Spacing around operators

• In C++, you can put any amount of whitespace between operators
and their operands:

std::cout << ((n/m)*m + n%m);

std::cout << ((n/m)*m+n%m);

 std::cout <<

 ((n

/ m)* m +

 n% m)

 ;

• We recommend:

– Putting one space between operands and + and -

– Juxtaposing operands with *, / and % operands

• Forcing your self soon makes it habitual

– You will not even think about it when you type…

22
Arithmetic operators

Standard conversions

• Suppose the compiler sees:

3.5/2

• Does it use floating-point division, or integer division?

– The only way for this to make sense is for the compiler to interpret
the 2 as a floating-point number

– This process is called a standard conversion

• Conversion of literals is performed by the compiler

23
Arithmetic operators

Order of operations and conversions

• Again, C++ is very exact when standard conversions occurs:

– Only when one operand is a floating-point number and the other is
an integer is the integer converted to a floating-point number

• What is the output of each of the following? Why?

 std::cout << (10.0 + 3.0/(9/2)) << std::endl;

 std::cout << (10.0 + 3.0/9*2) << std::endl;

 std::cout << (10.0 + 3/(9/2.0)) << std::endl;

24
Arithmetic operators

Unary operators

• A unary operator has only one operand

– For example, from secondary school, the “!” is a unitary operator

• It only takes one operands, e.g., 5!

• There are two unary operators for arithmetic:

– Unary negation operator changes the sign of what follows:

 std::cout << -(1 + 2 + 3) << std::endl;

 std::cout << -(2*3*4) << std::endl;

 std::cout << -(1 + 2*3) << std::endl;

– Unary neutral operator ‘+’ leaves the sign unchanged:

 std::cout << +(1 + 2 - 5) << std::endl;

 std::cout << +(-2*3*4) << std::endl;

 std::cout << +(1 - 2*3) << std::endl;

2020-08-18

7

25
Arithmetic operators

Standard conversions

• If all of the operands are integers, the result will be an integer:
35

3 + 6 + 4 + 7 + 1

12*(3 + 6)*(1 - 4)

(5 + 3 + 7)/10;

(56 - 1)*3*(4 + 1)

-243 + 6

+23

• If even one operand is a float, the result of will be a float:
35.0

3 + 7 + 2.9 + 7 + 1.3

12.5*(5 + 2)*(1.0 - 6)

(3 + 2 + 1)/10.5;

(6 – 1.7)*4*(8.9 + 1.7)

-6.4 + 3

+2.7

26
Arithmetic operators

Arithmetic expression

• We can now make the following statements:

– An integer arithmetic expression will always evaluate to an integer

– A floating-point arithmetic expression will always evaluate to a float

– A mixed arithmetic expression will always evaluate to a float

27
Arithmetic operators

Summary

• Following this presentation, you now:

– Understand the binary arithmetic operators in C++

• Addition, subtraction, multiplication and division

– Know that the result can:

• Initialize a local variable

• Be assigned to a local variable

– The effect of integer division and the remainder operator

– Conversion of integers to floating-point

– Understand the order of operations and standard conversions

– Are aware of the two unary arithmetic operators

28
Arithmetic operators

References

[1] Thomas McConkey, a simulation of a 6 GHz microwave signal
 transmitting through a coaxial pogo pin onto a micro-coplanar
 waveguide transmission line of a thin film superconducting
 aluminium (i.e., a quantum socket). Developed with the Ansys
 software HFSS.

[2] Wikipedia,
 https://en.wikipedia.org/wiki/Operators_in_C_and_C++#Arithmetic_operators

[3] cplusplus.com tutorial,

 http://www.cplusplus.com/doc/tutorial/operators/

[4] C++ reference,

 https://en.cppreference.com/w/cpp/language/operator_arithmetic

2020-08-18

8

29
Arithmetic operators

Acknowledgments

Proof read by Dr. Thomas McConkey and Charlie Liu.

30
Arithmetic operators

Colophon

These slides were prepared using the Georgia typeface. Mathematical
equations use Times New Roman, and source code is presented using
Consolas.

The photographs of lilacs in bloom appearing on the title slide and
accenting the top of each other slide were taken at the Royal Botanical
Gardens on May 27, 2018 by Douglas Wilhelm Harder. Please see

https://www.rbg.ca/

for more information.

31
Arithmetic operators

Disclaimer

These slides are provided for the ECE 150 Fundamentals of
Programming course taught at the University of Waterloo. The
material in it reflects the authors’ best judgment in light of the
information available to them at the time of preparation. Any reliance
on these course slides by any party for any other purpose are the
responsibility of such parties. The authors accept no responsibility for
damages, if any, suffered by any party as a result of decisions made or
actions based on these course slides for any other purpose than that for
which it was intended.

